Kamis, 29 Juli 2010

CNO-carbon-nitrogen-oksigen

Siklus CNO (karbon-nitrogen-oksigen) atau daur karbon atau daur cc (carbon cycle) adalah salah satu dari dua reaksi fusi yang mengubah hidrogen menjadi helium di dalam inti bintang, reaksi lainnya adalah reaksi rantai proton-proton.

Reaksi rantai proton-proton terutama terjadi di dalam bintang-bintang seukuran Matahari atau lebih kecil, namun reaksi pertama dari rantai proton-proton yang melibatkan dua proton memiliki penampang nuklir (cross section) yang kecil. Pada temperatur yang lebih tinggi bottleneck tersebut dilalui dengan memanfaatkan atom-atom karbon sebagai katalis dalam reaksi. Pada kondisi suhu inti Matahari, hanya 1,7% 4He yang diproduksi melalui mekanisme daur karbon ini, tetapi di dalam bintang-bintang yang lebih berat daur karbon menjadi sumber energi utama. Proses daur karbon pertama kali diusulkan pada tahun 1938 oleh fisikawan Hans Bethe.
Siklus utama

Dominan atau tidaknya reaksi daur karbon bergantung pada kelimpahan 12C dan temperatur. Reaksi tersebut berlangsung sebagai berikut:
(1) 1H + 12C → 13N + γ + 1,94 MeV
(2) 13N → 13C + e+ + νe + 1,51 MeV
(3) 1H + 13C → 14N + γ + 7,55 MeV
(4) 1H + 14N → 15O + γ + 7,29 MeV
(5) 15O → 15N + e+ + νe + 1,76 MeV
(6) 1H + 15N → 12C + 4He + 4,96 MeV

Dalam rangkaian reaksi ini, secara netto, empat proton diubah menjadi satu partikel alfa, dua positron (yang segera musnah karena interaksi dengan elektron dan menghasilkan energi dalam bentuk sinar gamma) dan dua neutrino. Neutrino yang dihasilkan reaksi (2) membawa energi sekitar 0,71 MeV, sedangkan yang dihasilkan reaksi (5) membawa energi sekitar 1,00 MeV. Dari rangkaian reaksi di atas dapat dilihat bahwa inti karbon hanya bertindak sebagai katalis dan pada akhir rangkaian dihasilkan kembali. Inti-inti nitrogen dan oksigen memang terbentuk tetapi segera meluruh atau bereaksi dengan proton yang ada. Rangkaian reaksi ini dominan pada suhu di atas 15 juta Kelvin.
CNO-II

Pada suhu di atas 17 juta Kelvin, kadang-kadang reaksi (6) tidak menghasilkan 12C dan 4He, tetapi malah 16O dan sebuah foton, dan terus berlanjut dalam rangkaian reaksi sebagai berikut:
(6a) 1H + 15N → 16O + γ + 12,13 MeV
(7a) 1H + 16O → 17F + γ + 0,60 MeV
(8a) 17F → 17O + e+ + νe + 0,80 MeV
(9a) 1H + 17O → 14N + 4He + 1,19 MeV

Dari 2500 interaksi antara 1H dan 15N, hanya 1 reaksi (6a) yang terjadi. Tidak seperti rangkaian reaksi pertama, di akhir rangkaian kedua 12C tidak terbentuk kembali, tetapi menghasilkan 14N. Neutrino yang dilepaskan pada reaksi (8a) membawa energi setidaknya 0,94 MeV. Seperti halnya inti nitrogen dan oksigen pada rangkaian pertama, inti fluor pada rangkaian kedua terbentuk tetapi segera meluruh.

Rangkaian reaksi utama sering disebut sebagai siklus CNO-I dan rangkaian reaksi kedua disebut sebagai siklus CNO-II.
Sumber rujukan

* Bowers, Richard L.; Terry Deeming (1984). Astrophysics I. Boston: Jones and Bartlett Publisher, Inc..
* Sutantyo, Winardi (1984). Astrofisika mengenal bintang. Bandung: Penerbit ITB.

unsur-unsur dasar dalam bumii

Materi yang menyusun tubuh organisme berasal dari bumi. Materi yang berupa unsur-unsur terdapat dalam senyawa kimia yang merupakan Materi dasar makhluk hidup dan tak hidup.

Siklus biogeokimia atau siklus organikanorganik adalah siklus unsur atau senyawa kimia yang mengalir dari komponen abiotik ke biotik dan kembali lagi ke komponen abiotik. Siklus unsur-unsur tersebut tidak hanya melalui organisme, tetapi jugs melibatkan reaksi-reaksi kimia dalam lingkungan abiotik sehingga disebut siklus biogeokimia.

Siklus-siklus tersebut antara lain: siklus air, siklus oksigen, siklus karbon, siklus nitrogen, dan siklus sulfur. Di sini hanya akan dibahas 3 macam siklus, yaitu siklus nitrogen, siklus fosfor, dan siklus karbon.

1. Siklus Nitrogen (N2)
Gas nitrogen banyak terdapat di atmosfer, yaitu 80% dari udara. Nitrogen bebas dapat ditambat/difiksasi terutama oleh tumbuhan yang berbintil akar (misalnya jenis polongan) dan beberapa jenis ganggang. Nitrogen bebas juga dapat bereaksi dengan hidrogen atau oksigen dengan bantuan kilat/ petir.

Tumbuhan memperoleh nitrogen dari dalam tanah berupa amonia (NH3), ion nitrit (N02- ), dan ion nitrat (N03- ).

Beberapa bakteri yang dapat menambat nitrogen terdapat pada akar Legum dan akar tumbuhan lain, misalnya Marsiella crenata. Selain itu, terdapat bakteri dalam tanah yang dapat mengikat nitrogen secara langsung, yakni Azotobacter sp. yang bersifat aerob dan Clostridium sp. yang bersifat anaerob. Nostoc sp. dan Anabaena sp. (ganggang biru) juga mampu menambat nitrogen.
Nitrogen yang diikat biasanya dalam bentuk amonia. Amonia diperoleh dari hasil penguraian jaringan yang mati oleh bakteri. Amonia ini akan dinitrifikasi oleh bakteri nitrit, yaitu Nitrosomonas dan Nitrosococcus sehingga menghasilkan nitrat yang akan diserap oleh akar tumbuhan. Selanjutnya oleh bakteri denitrifikan, nitrat diubah menjadi amonia kembali, dan amonia diubah menjadi nitrogen yang dilepaskan ke udara. Dengan cara ini siklus nitrogen akan berulang dalam ekosistem. Lihat Gambar.

Gbr. Siklus Nitrogen di Alam

2. Siklus Fosfor
Di alam, fosfor terdapat dalam dua bentuk, yaitu senyawa fosfat organik (pada tumbuhan dan hewan) dan senyawa fosfat anorganik (pada air dan tanah).

Fosfat organik dari hewan dan tumbuhan yang mati diuraikan oleh dekomposer (pengurai) menjadi fosfat anorganik. Fosfat anorganik yang terlarut di air tanah atau air laut akan terkikis dan mengendap di sedimen laut. Oleh karena itu, fosfat banyak terdapat di batu karang dan fosil. Fosfat dari batu dan fosil terkikis dan membentuk fosfat anorganik terlarut di air tanah dan laut. Fosfat anorganik ini kemudian akan diserap oleh akar tumbuhan lagi. Siklus ini berulang terus menerus. Lihat Gambar


Gbr. Siklus Fosfor di Alam

3. Siklus Karbon dan Oksigen
Di atmosfer terdapat kandungan COZ sebanyak 0.03%. Sumber-sumber COZ di udara berasal dari respirasi manusia dan hewan, erupsi vulkanik, pembakaran batubara, dan asap pabrik.

Karbon dioksida di udara dimanfaatkan oleh tumbuhan untuk berfotosintesis dan menghasilkan oksigen yang nantinya akan digunakan oleh manusia dan hewan untuk berespirasi.

Hewan dan tumbuhan yang mati, dalam waktu yang lama akan membentuk batubara di dalam tanah. Batubara akan dimanfaatkan lagi sebagai bahan bakar yang juga menambah kadar C02 di udara.

Di ekosistem air, pertukaran C02 dengan atmosfer berjalan secara tidak langsung. Karbon dioksida berikatan dengan air membentuk asam karbonat yang akan terurai menjadi ion bikarbonat. Bikarbonat adalah sumber karbon bagi alga yang memproduksi makanan untuk diri mereka sendiri dan organisme heterotrof lain. Sebaliknya, saat organisme air berespirasi, COz yang mereka keluarkan menjadi bikarbonat. Jumlah bikarbonat dalam air adalah seimbang dengan jumlah C02 di air. Lihat Gambar

Gbr. Siklus Karbon dan Oksigen di Alam